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Extracting functional connectivity patterns among cortical regions in fMRI datasets is a challenge stimulating the development of
effective data-driven or model based techniques. Here, we present a novel data-driven method for the extraction of significantly
connected functional ROIs directly from the preprocessed fMRI data without relying on a priori knowledge of the expected
activations. This method finds spatially compact groups of voxels which show a homogeneous pattern of significant connectivity
with other regions in the brain.Themethod, called Select and Cluster (S&C), consists of two steps: first, a dimensionality reduction
step based on a blind multiresolution pairwise correlation by which the subset of all cortical voxels with significant mutual
correlation is selected and the second step in which the selected voxels are grouped into spatially compact and functionally
homogeneous ROIs by means of a Support Vector Clustering (SVC) algorithm. The S&C method is described in detail. Its
performance assessed on simulated and experimental fMRI data is compared to other methods commonly used in functional
connectivity analyses, such as Independent Component Analysis (ICA) or clustering. S&C method simplifies the extraction of
functional networks in fMRI by identifying automatically spatially compact groups of voxels (ROIs) involved in whole brain scale
activation networks.

1. Introduction

Several data-driven techniques have been proposed for
extracting functional connectivity patterns among cortical
regions in fMRI datasets [1, 2]. These techniques can be
grouped into three main categories: (i) methods based on
pairwisemeasurements of connectivity between spatially seg-
regated locations [3–5]; (ii) methods based on eigenimages
decomposition of the image series into main components
(PCA, ICA) [6–9]; (iii) clustering methods which group
voxels on the base of a similarity distance and resulting in
distinct functional clusters.

The pairwise measures have the advantage of being easily
interpretable and benefit of a robust univariate framework
for assessing significance. However, they are quite sensitive
to noise and outliers and are not well suited for whole
brain connectivity analysis because the global connectivity

patterns are usually fragmented over a large number of
pairwise relationships. Among pairwise measures, correla-
tion analysis is one of the most widely exploited tools for
studying interactions among brain areas [10, 11], since it
is strictly related to the common definition of functional
connectivity as quantifying temporal correlations between
spatially segregated areas. It also provides a simple framework
for the assessment of statistical significance [12] and similar
to other data-driven methods it does not require a priori
definition of a model of interaction between brain areas. Its
major drawback, however, is that it is unpractical to use for a
whole brain connectivity study given the high number of sig-
nificant connections that are usually found. A solution to this
problem is to limit connectivity analysis to a set of reference
ROIs whose spatial position and extension are derived from
brain activations and the fMRI literature [13]. However, in
taking this approach networks not including the chosen
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seed reference ROI are not accounted for. To overcome this
limitation while still performing a whole brain analysis, an
alternative solution is to downsample the brain volume to get
a smaller set of the time series from the mean signals of spa-
tially contiguous voxels and apply correlation analysis on this
set. Some of the proposed downsampling solutions are based
on anatomical parcellation either exploiting information
provided by a Brain Atlas or based on a clustering procedure
in the anatomical space [14, 15]. Anatomical knowledge based
methods make the assumption that voxels from the same
anatomical area are also functionally related. To relax this
strong assumption, it has been proposed to take functional
information into account in the parcellation [16], but this
approach requires a priori assumptions on the number of
areas to be derived in the parcellation and also to perform
a priori modeling of functional activations responses in the
tasks presented in fMRI.

Exploratory methods of functional connectivity based on
eigenimages decomposition (ICAor PCA) are a powerful tool
for extracting the main sources of variance in the data and
provide a global overview of functional relationships among
brain areas (ROIs). However, a drawback of such methods
is that they lack a clear framework for assessing statistical
significance of the spatial maps for each component, even
though several probabilistic models have been proposed for
pattern-level noise-rejection criteria [17]. Furthermore, these
methods are not suitable for classifying the set of components
resulting from the analysis into components of interest and
noise components either by paring the spatial component
associated time-series with expected activation patterns or
looking for consistent patterns over multiple subjects within
the group level analysis [8, 18]. As a consequence, the
spatial segmentation of the brain volume in functional ROIs
obtained by thresholding the spatial maps of regions of
interest depends on the choice of both the map and the
threshold [7].

Finally, the clustering methods [19–25] also have prob-
lems to identify patterns of activation and specific ROIs
since they force voxels to be grouped into separate functional
clusters. A clear segmentation in spatially compact ROIs
is often not possible since no spatial information is taken
into account and spatial boundaries within a component are
usually not smooth, unless an a priori functional model is
imposed which provides voxels partitioning [16]. Moreover,
important parameters such as the number of clusters to be
defined are chosen by ad hoc or post hoc procedures.

In this paper we propose a new data-driven exploratory
method, the Select and Cluster (S&C). The S&C method
receives as input a single subject’s fMRI dataset and provides
as output the set of all ROIs involved in any pattern of
significant functional connectivity present in the data with
no assumptions on the number, position, shape, and size
of the ROIs or on the expected functional profile generated
by subjects’ response to the task presented during fMRI
scanning. We define these automatically extracted ROIs as
connectivity ROIs: spatially compact groups of voxels showing
a homogeneous pattern of significant connectivity to other
regions in the brain [26]. Since the set of connectivity ROIs
automatically extracted by S&C can be very large, we also

propose a postprocessing step to visualize in a network
the subset of extracted ROIs and connected to a seed ROI
chosen from the set. These connectivity networks can then be
compared to those obtained by other methods, such as ICA,
PCA, or clustering methods.

The S&Cmethod is composed of three main macrosteps:
(a) starting with the entire cortex all voxels showing sta-
tistically significant correlation to any other voxels are
extracted, while limiting the occurrence of spurious correla-
tions through applying a multiresolution correlation analysis
at two spatial scales; (b) a low-dimensional representation
of significantly connected voxels time series is extracted; (c)
voxels are grouped through a clustering procedure based on
a spatiofunctional metric defined in a feature space given
by spatial coordinates and functional weights of the low-
dimensional representation calculated in (b). The output of
spatiofunctional clustering step is therefore a set of ROIs
involved in connectivity networks. The final postprocessing
step is a procedure based on maximal cliques analysis [27]
by which the set of ROIs produced in the output are grouped
by the clustering step into networks of mutually significantly
connected ROIs.

We will show that the S&C algorithm merges into a
unique methodology, which has the most advantages of
comparable approaches. In particular, it shares with linear
pairwise measure (as the Pearson Correlation coefficient)
the simple interpretability and robust statistical inference. It
exploits the compact and noisy-less representation of main
functional patterns in the data provided by eigenimages
decompositionmethods. Finally, it provides a spatial segmen-
tation of the brain based on the SVC clustering which takes
into account both the functional profile of the voxels and
their spatial position without requiring any assumption on
the ROIs number, size, or shape.

The document is organized as follows: Section 2 presents
materials and the S&C method and Section 3 describes
the validation of the method and its comparison to other
methods available in literature. In particular in Section 3, (i)
the S&C spatiofunctional clustering efficacy is compared to
other clustering methods available in literature on a public
hybrid dataset, (ii) the ability of S&Cmethod to automatically
extract ROIs from the data without losing signal of interest
is validated on an experimental fMRI dataset on which also
a set of reference ROIs has been independently extracted
exploiting standard activation analysis methods, and (iii) the
efficacy of S&C at extracting connectivity networks involving
a chosen seed ROI is compared to ICA on a sample subject
from the experimental dataset.

2. Material and Methods

In this section the Select and Cluster (S&C) algorithm is
described in full detail.

2.1. Select Step: Multiscale Correlation Analysis (MSCA). The
first step in the S&C method is the multiscale correlation
analysis outlined in Figure 1. This step implements the Select
part of the algorithm, aimed at extracting the subset of
voxels significantly correlated to any other cortical voxel from
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Figure 1: Schematic representation of the multiscale correlation analysis algorithm aimed at selecting those Grey Matter voxels showing
significant connectivity to be used for further analysis.

the set of all voxels in the cerebral cortex (≈105 voxels per
brain volume). To deal with curse of dimensionality and
the presence of spurious signals we implemented a 2-spatial
scales correlation analysis: a coarse scale correlation analysis,
performed on average signals of groups of neighbor voxels,
is followed by a fine scale correlation analysis, performed at
the scale of fMRI data acquisition voxels. For not biasing
the analysis with the arbitrary voxel grouping method, the
downsampling methodology we have adopted here does not
rely on any a priori anatomical or functional information.

A 2D visualization of the multiscale correlation analysis
procedure is shown in Figure 2. The signal associated to
coarse voxels in each scan is extracted to create coarse scale
time series and a coarse scale correlation matrix is then
calculated. Significant pairwise correlations are then iden-
tified in the correlation matrix according to the procedure
described in Appendix A.1. A Coarse Binary Mask is then
derived from the union of all coarse voxels involved in at least
one significant connection. With reference to the algorithm
summarized in Figure 1, to avoid signal loss due to the arbi-
trary initial positioning of coarse scale downsampling grid
(Figure 2(a)), a second coarse correlation analysis iteration is
performed after shifting in every dimension the coarse grid
by 1 voxel at the acquisition scale (Figure 2(b)). The union of
the two Coarse Binary Masks (Figure 2(c)) is then exploited
to select the acquisition scale voxels which enter a second
correlation analysis step (Figure 2(d)). Again correlations
from this second analysis are tested for significance and
selected to enter the clustering step of the S&C method.

Since in the coarse scale correlation analysis we consider
all coarse voxel with at least 1 nonzero fMRI data acquisition
scale voxel, to reduce the occurrence of outliers we require
those voxels to have at least 4 significant correlations [3].
The 3-dimensional algorithm implemented is described in
full detail in Appendix A.2. It is worth mentioning here that
coarse correlation analysis is performed at the resolution
element (resel) scale [29]; that is, coarse voxels are of the order
of the Full Width at Half Maximum in mm of the Gaussian

kernel used for spatial smoothing. This choice has been
reported to provide the best tradeoff between downsampling
and signal loss in anatomical parcellation applications [30].

2.2. Cluster STEP: Spatiofunctional Support Vector Clustering.
The clustering part of S&C method is based on the Support
Vector Clustering (SVC) algorithm which exploits a specifi-
cally designed spatiofunctional kernel adopted as the metric
for the clustering process.

2.2.1. Overview of Support Vector Clustering Algorithm. The
Support Vector Clustering (SVC) algorithm [31] is a particu-
lar application of the Support Vectors Machines (SVM) [32]
classification algorithm. The key idea under SVC is that two
input vectors belong to the same cluster only if no point
on the straight path treaded between the two vectors falls
out of the cluster boundaries (Figure 3, input space). To
group input space vectors in clusters, the SVCalgorithmmaps
these vectors into a high-dimensional space (Figure 3) where
the support domain of the input points sample set can be
described by the minimal enclosing hypersphere with radius
R. The SVC key observation is that any point on the test path
falling out of any cluster boundary in the input space falls out
of the minimal enclosing hypersphere in the mapped space.

The SVC algorithm implements the clustering strategy
described above in two steps:

(1) The first step is estimation of the domain support
of the sample vectors [34] to find the minimal enclosing
hypersphere R:
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Figure 2: 2D visualization of the 3D multiscale correlation analysis procedure implemented. (a) Coarse voxels time series are derived from
fine scale cortical voxels and an all to all correlation analysis is performed; (b) the downsampling coarse grid is shifted and the correlation
analysis is repeated on the corresponding new set of coarse voxels time series; (c) a Binary Mask is derived from the union of all coarse voxels
(blue squares from first correlation analysis and red squares after the grid shift) involved in at least one significant connection in one of the
two coarse level correlation analyses. (d) Fine scale correlation analysis performed on the set of voxels in the output from the coarse scale
correlation analysis. (e) A fine scale binary mask derived from the union of all cortical voxels involved in at least one significant connection
at the fine scale (in black are the voxels eliminated from the correlation).
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(2) The second is segmentation in disconnected regions
by means of the boundaries of the domains. To assign differ-
ent input vectors to different clusters a geometrical approach
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The clusters are defined as the connected components of the
graph based on the matrix A.

2.2.2. Application of SVC to ROIs Automatic Extraction from
fMRI Data. In our application we will use the SVC algorithm
to extract spatially compact groups of voxels which are
also functionally homogeneous. Note that the ROIs and the
functional cluster are defined on the basis of the voxels
activation time series and S&Cmethod. Other computational
methods rely on the similarity of voxels activation pattern
for clustering them into a single ROI. In the present work an
attempt to relate these “activation based ROIs” to neurophys-
iological areas is made by labeling the reference ROIs used
for method validation on the base of literature information to
provide some link to anatomical identification of such ROIs.

We therefore need the SVC algorithm to cluster voxels
and take into account both spatial and functional properties.
The solution we adopted was the implementation of a spatio-
functional kernel to use in (3). In particular, since Gaussian
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Figure 3: Graphical representation of Support Vector Clustering working principle: Support Vectors, marked with circles, define the
boundaries of clusters in the input space (a) and lie on the surface of the minimal enclosing hyper sphere in the mapped space (b), while
all other nonsupport vector input points will lie within the hyper sphere in the mapped space. Φ is the mapping function across input (a)
and mapped space (b). A path connecting two input points belonging to the same cluster has been sampled in pink in the input space: points
on this path will be mapped inside the hypersphere on the right. A path connecting two input vectors belonging to two different clusters has
been sampled in green in the input space: points on this path will be mapped outside the hypersphere on the right.

kernels function are known to induce more compact support
for the training data in the associated space [34] and since the
product of two valid kernels is still a valid kernel [35], two
Gaussian kernels were composed to give the following kernel
expressing a dot product between two voxels V
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In (3) (see Appendix B for more detail),
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spatial coordinates of the voxels;
(ii) for a given voxel V

𝑖
, �̃�PC𝑝 represents the t-

transformed weight for the pth component derived
from a Singular Value Decomposition [36] of the
time series of all voxels in output of the multiscale
correlation analysis;

(iii) 𝑃 is the number of principal components to use in
the functional kernel and it was derived exploiting
both the information theoretic estimate provided by
the Minimal Description Length criterion [36] and
the Akaike’s Information Criterion (AIC) [37] across
multiple subjects;

(iv) 𝛾𝑆1,2,3 > 0 is a scaling parameter for spatial distances
estimated as 𝛾𝑠
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= 1/𝜎FWHM𝑘

2
, 𝜎FWHM𝑘 = FWHM

𝑘
/

2.35 for each spatial dimension 𝑘. The constant factor
2.35 is the proportionality factor between the sizes of
FWHM (full width and half maximum) and sigma for
a Gaussian. This choice allows us to express distances
in units related to the actual spatial resolution deter-
mined by the amount of spatial smoothing;

(v) 𝛾𝐹
𝑝

is a scaling parameter for functional distances
derived from the corresponding distributions of the
principal components t-transformed weights as 𝛾𝐹

𝑝
=

1/𝜎
𝑙

2
, 𝑙 = 1, . . . , 𝑃, where 𝜎

𝑙
is the standard deviation

estimated from the distribution of the 𝑙th component.

Once the spatiofunctional kernel for the SVC clustering
algorithm is defined, when using SVC on a fMRI dataset,
as the number of voxels to cluster increases, two problems
can possibly occur: (i) the clustering process becomes com-
putationally expensive (to calculate for each pair of voxels
whether the path connecting them exits the candidate cluster
support); (ii) the minimal enclosing hypersphere derived
from (1) is less efficiently estimating the domain support for
the set of voxels in input. To overcome these two problems
and speed up the clustering procedure, a partitioning of
the subject brains into coarse anatomical areas is performed
after the multiscale correlation voxel selection procedure
and before SVC clustering step. Therefore SVC algorithm
groups voxels selected by multiscale correlation analysis and
belonging to the same anatomical region. It is important to
note that introducing this anatomical information after the
blind multiscale correlation analysis step keeps the Select
step of the S&C algorithm unbiased by a priori anatomical
assumption for the number of voxels to retain but just
can increase the number of ROIs obtained in output. The
anatomical labeling method [38] from SPM2/5/8 was used,
where a total of 45 Volumes of Interests are defined for each
hemisphere.

2.3. Visualization of Connectivity Networks. The procedure
summarized described in Section 2.1 gives as output a set of
significantly correlated voxels which are grouped into ROIs
with the procedure described in Section 2.2. Here we present
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a postprocessing procedure to extract networks of mutually
connected ROIs:

(1) For each of the n ROIs obtained in output of the SVC,
a mean time series is calculated and a pairwise cor-
relation analysis is performed among all ROIs mean
time series. Significance assessment is performed at a
level of 0.05 corrected for multiple comparison using
the Bonferroni correction.

(2) The correlation matrix is interpreted as an adjacency
matrix 𝐴

𝑖,𝑗
where 𝑖, 𝑗 = 1, . . . , 𝑛 has nonzero entries

for all connected ROIs 𝑖, 𝑗 and a search for cliques is
performed in the undirected graph G associated with
the adjacencymatrix𝐴

𝑖,𝑗
. Given a graphG, the cliques

are defined as all possible subsets of vertices V such
that, for every two vertices in V, there exists an edge
connecting them. In our application each vertex is
an ROI and each of the edges represents a significant
connection the ROI forms with other ROIs.

(3) For each givenROI, its associatedmaximal clique (i.e.,
the largest set of mutually connected ROIs including
that specific ROI) is interpreted as a connectivity
network [39].

(4) All networks can be visualized by considering in
turn each of the n ROIs obtained in output of the
spatiofunctional SVC step.

The resulting networks are comparable to the output of other
exploratory methods such as ICA.

2.4. Datasets. To validate our method we used two fMRI
datasets.

Hybrid fMRI Dataset. To prove the efficacy of the proposed
clustering method based on the spatiofunctional metric
induced by the kernel in Section 2.2.2, we tested its perfor-
mance on a hybrid (synthesized) dataset exploited in [28]
previously used for quantitative comparison of clustering
methods applied to fMRI data. A hybrid dataset is obtained
by taking superimposing artificial fMRI activation signal to
a single slice extracted from real experimental fMRI data
from a single subject. The data set consists of a time series
of 140 time images of the single brain slice, with a matrix
size of 64 times 64 pixels. The slice chosen was overlaid
with 25 pixels of activation (a square of 5 × 5 pixels) with a
contrast-to-noise ratio of 1.33, 1.66, and 2 where the noise was
calculated within a cortical region. The hybrid datasets are
ordered by increasing levels of contrast to noise ratio (CNR)
and, respectively, labelled h4, h5, and h6 (for consistencywith
[28]).

In Vivo fMRI Data from Human Subjects. We also used fMRI
data from 8 right handed healthy subjects (ages 19–23) who
performed three visualmotion discrimination tasks.The data
was acquired at the Athinoula Center for Biomedical Imag-
ing, Massachusetts General Hospital, Boston. All subjects
gave informed consent to participate in the research, accord-
ing to the IRB requirements of Massachusetts General Hos-
pital. The stimuli consisted of random dot kinematograms in

which a proportion of the dots moved in the same direction
while the rest provided masking motion noise. In the first
task, Motion Coherence-radial (MCT) [40], the signal dots
were moving radially. The subject’s task was to determine
the direction of the motion (expanding or contracting). In
the second task, Motion Discontinuity (MDT) [40], subjects
were required to determine whether the motion display was
homogeneous or discontinuous. The discontinuous display
was defined by an imaginary line in one of the following
orientations: vertical, horizontal, and diagonal from upper
right to lower left or from upper left to lower right. This
line divided the motion display into two halves and it always
intersected the display in the center. This imaginary line
resulted from opposite directions of motion (up or down) of
the signal dots in the two halves of the display.The third task,
MotionDiscontinuity defined Form fromMotion (MDTPM)
[40], was similar to the MDT task, except it portrayed a 2D
form (cross or a bar) shown in at the center of the display.
Here too, the formswere defined by an imaginary line defined
by opposite directions of motion (up or down) of the signal
dots within the shape area and outside (the background).

All tests were presented in a blocked design paradigm
with temporally interleaved ON (30 s) and OFF (15 s) periods
repeated in random order 6 times in a run, for a total of
285 sec (with an extra 15 sec OFF at the end). In all tests and
all runs, the OFF periods consisted of a static random pattern
display with the same statistical characteristics (aperture
diameter, dots density, luminance, and size) as the motion
displays.

fMRI Data Acquisition and Preprocessing.The fMRI data were
acquired with a 3.0-T Magneton VISION (Siemens, Ger-
many)whole-bodyMRI system equippedwith a head volume
coil. For the fMRI functional volume acquisition, an echo
planar imaging (EPI) sequence sensitive to blood oxygen level
dependent (BOLD) effects was used with following imaging
parameters: repetition time TR = 2.5 s, echo time TE = 30ms,
flip angle of 90 deg, and field of view of 200mm. The brain
volume consisted of 22 slices of axial orientation, image size
was 64×64 pixels, and slices thickness was 5mmwith a gap of
1mm. Therefore, slices were covering the whole brain; voxel
size of EPI images was 3.13 × 3.13 × 6.00mm. For anatomical
localization, 3D gradient echo T1-weighted sequence was
used, with anatomical image size of 256 × 256 × 128 pixels,
slices thickness of 1.33mm, and voxel size of 1.00 × 1.00 ×
1.33mm.

In all subjects the retinotopic areas were defined by using
the classical experimental paradigm for retinotopic mapping
(rotatingwedges and expanding rings).Thedatawere prepro-
cessed with the SPM2 package (http://www.fil.ion.ucl.ac.uk/
spm/spm2.html).

After data preprocessing, a set of 16 subject-specific ROIs
were defined in each hemisphere, on the base of single subject
cortical activations that resulted from the three motion tasks
(MTLOC, MDT, and MDTPM) and from the retinotopic
mapping. The ROIs definition was furthermore checked
against the existing fMRI literature [41].These subject specific
ROIs obtained with standard model based activation analysis
were used as reference ROIs to validate the performance
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Table 1: Performance on a reference hybrid dataset with increasing CNR (h4 = 1.33; h5 = 1.66; h6 = 2), of the clustering methods used for
fMRI data.The value of the weighted Jaccard coefficient is reported for the cluster withmaximal number of True Positive voxels found by each
method. Numbers in table (the highest the better) measure the number of voxels initially belonging to true cluster (artificially defined) which
are put in the same cluster by each comparedmethod. Since Support Vector Clustering resulted in a number of clusters ≤ 10 in each dataset, its
performance is compared to othermethods performancewith the number of clusters initialized to 10. For nonhierarchicalmethods, clustering
solutions depend on initialization conditions, so the mean performance across 50 different initialization conditions is reported. Note that the
higher the 𝑤

𝐽𝐶
performance score, the better the quality of the activation cluster. SVC method shows a stable performance across increasing

levels of noise and performs better than other methods, partially adapted from Dimitriadou et al. 2004 [28].

Hybrid dataset h4 Hybrid dataset h5 Hybrid dataset h6

Hierarchical

SVC .96 .96 .96
Hierarchical (ward) .74 .89 .96
Hierarchical (complete link) .07 .06 .45
Hierarchical (single link) .01 .01 .01

Nonhierarchical

Fuzzy 𝐶-means .67 .66 .67
𝐾-means .63 .96 .96
Neural gas .30 .96 .96
SOM .68 .66 .67
MaxiMin .04 .04 .04

of proposed S&C method to automatically extract subject
specific ROIs.

3. Results

3.1. Comparison of Spatiofunctional SVCwithOtherClustering
Algorithms. In this section, we first apply the Support Vector
Clustering (SVC) algorithm and the spatiofunctional kernel
(see (3)) on the hybrid dataset (described in Section 2.4).
For each dataset, voxels outside the brain were masked
out resulting in 1212 voxels to cluster. For datasets h5 and
h6 the first 5 PC components were used in the functional
kernel (second factor in (3)) while up to 7 components were
considered for dataset h4, given the low CNR. Since no
spatial smoothing preprocessing had been performed on this
dataset, to calculate the 𝛾𝑆 parameter according to (3), the
FWHM (FullWidth at HalfMaximum)Gaussian kernel used
for smoothing the data was estimated directly from data
through the method proposed in [42].

Second, the SVC clustering performance is compared
to the performance of the following methods: Hierarchical
Clustering in the single linkage, complete linkage, and ward
implementation [43]; K-means algorithm; Fuzzy clustering
[20, 22], Neural Gas [25], Self-Organizing Maps (SOM) [44];
Crisp clustering, based on maximum distance.

The evaluation of the performance of these clustering
methods was done by using the weighted Jaccard coefficient
(𝑤
𝐽𝐶
), defined as 𝑤

𝐽𝐶
= (𝑎 + 𝑃(𝑎)

−1
)/(𝑎 + 𝑃(𝑎)

−1
+ 𝑏 +

𝑃(𝑏)

−1
+ 𝑐 + 𝑃(𝑐)

−1
), where 𝑎 is the number of True Positives,

𝑏 the number of False Negatives, and 𝑐 the number of False
Positives voxels and𝑃(𝑎)−1,𝑃(𝑏)−1, and𝑃(𝑐)−1 are the inverse
of corresponding probabilities [28]. Using weights based on
inverse probabilities allows for rare True Positive class to be
emphasized in the clustering quality assessment. The 𝑤

𝐽𝐶

coefficient was calculated on the “activation” cluster, defined
as the cluster for which the maximum absolute number of TP
voxels was found by the algorithm.

In Table 1 we report performances of all clustering algo-
rithms considered here on the three datasets with increasing
CNR. Since SVC algorithm finds 10 clusters in each dataset
h4, h5, and h6, respectively, we compare its performance to
the performance of other methods (Table 1) for the number
of clusters parameter set to 10. Since the number of clusters
found by SVC nonlinearly depends on the values chosen
for the spatiofunctional kernel 𝛾 parameters we checked the
stability of SVC algorithm performance at their variation.
Results shown in Table 1 using the estimators described in
Section 2.2.2 are stable in a range �̃�±0.2 around the proposed
estimate value.

3.2. S&C Method Performance on Real fMRI Data. We apply
the whole S&C method to a fMRI dataset acquired in our
laboratory described in Section 2.4 to investigate the ability
of S&Cmethod to select voxels of interest and group them in
ROIs. As benchmark method for ROIs definition we adopted
a standard activation analysis based on t-test comparison of
the ON and OFF conditions of the experimental paradigm
(Section 2.4).

3.2.1. Noise Reduction Properties of Multiscale Correlation
Analysis Method (MSCA). Wewill assess the noise reduction
property of multiscale correlation procedure by showing that
a more efficient extraction of the components of interest
can be performed on the resulting reduced set of voxels. In
particular, we will use Minimal Description Length (MDL)
method to estimate the number of independent components
conveying most of information included in the voxels time
series. Only a part of these components will be labelled
“component of interest” on the base of their similarity to
the stimulus pattern. If multiscale correlation analysis is
able to reduce the number of independent components (as
estimated by MDL) while retaining those similar to the
stimulus pattern, then we will have a demonstration of the
fact that MCA rejects just noisy components.
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Table 2: Number of sources estimated with the Minimal Description Length criterion on the reduced dataset of voxels selected from the
multiscale correlation analysis procedure. In brackets we report the number of sources estimated on the dataset of all cortical voxels. Subjects
(S1 to S8) are in columns and tasks are in rows.

S1 S2 S3 S4 S5 S6 S7 S8
MDT 2 (26) 3 (26) 2 (26) 6 (26) 5 (26) 7 (26) 2 (26) 3 (26)
MDTPM 3 (28) 3 (28) 4 (28) 5 (28) 6 (28) 5 (28) 4 (28)
MTLOC 4 (27) 4 (27) 9 (27) 4 (27) 5 (27) 7 (27) 4 (27) 4 (27)

Table 3: Comparison of SVD results for the set of ROIs voxels, the reduced set from multiscale analysis, and the whole cortex voxel dataset.
For the three tasks and all subjects the maximally stimulus-correlated component was extracted and the following descriptive values were
calculated: (i) mean correlation coefficient absolute value; (ii) mean percentage of variance accounted by the component. The descriptive
values mentioned were calculated on two sets of voxels, respectively, before (all cortical voxels) and after multiscale correlation analysis
method (reduced set of voxels).

Mean rank Mean corr to HRF Mean var explained%

MDT Reduced set of voxels 1.63 0.78 17.18
All cortical voxels 2.13 0.72 14.75

MDTPM Reduced set of voxels 1.86 0.71 18.21
All cortical voxels 1.86 0.68 16.99

MTLOC Reduced set of voxels 3.00 0.47 11.61
All cortical voxels 3.50 0.46 9.06

HRF: hemodynamic response function.

Table 4: Number of sources estimated across subjects and tasks
using (4) on the reduced dataset of voxels selected from the
multiscale correlation analysis procedure. Subjects (S1 to S8) are in
columns and tasks are in rows.

S1 S2 S3 S4 S5 S6 S7 S8
MDT 5 5 5 6 5 7 5 5
MDTPM 6 6 6 6 6 6 6
MTLOC 6 6 9 6 6 7 6 6

Table 2 shows, for all subject and tasks, the number
of components estimated with the Minimal Description
Length (MDL) [45] on the reduced dataset resulting from the
application of themultiscale correlation analysis.Thenumber
of components estimated on all cortical voxels is reported in
brackets.

In Table 3 we present the stimulus related components
extraction performance for the reduced set and the initial
set of cortical voxels. Specifically, the mean correlation coef-
ficient absolute value and the mean percentage of variance
accounted by the stimulus related component are reported
for the three sets of voxels across subjects and tasks. Tables
2 and 3 show that (i) the multiscale correlation analysis
(MSCA) procedure is able to extract a subset of voxels whose
activation patterns can be described using a small number of
components putting in evidence the spatiotemporal covari-
ance structure dimensionality reduction properties of the
procedure and (ii) stimulus related components are better
extracted in the reduced dataset with respect to all cortical
voxels, suggesting that dimensionality reduction occurs at the
expense of noise components.

In Table 4 we report the number of components used
in the functional kernel for each subject across tasks. It is

important to note that we must provide the functional kernel
with an informative representation of the functional space
and not to estimate the exact number of sources to obtain a
correct decomposition, as suggested by other methods (as for
ICA). As a tradeoff between the necessity of having a small
number of clustering features and that of not losing possibly
interesting signal, we decided to use, for each subject 𝑖 in a
given task, a number of components given by

𝑃
𝑠𝑖
= max (𝑃MDL

𝑠𝑖
;mean {median

𝑖∈{1,...,𝑁}
(𝑃

MDL
𝑠𝑖

) ,

median
𝑖∈{1,...,𝑁}

(𝑃

AIC
𝑠𝑖

)})

(4)

that was extracted on the reduced dataset of voxels selected
from the multiscale correlation analysis procedure. Moving
from the assumption that the number of task-relevant sources
of variance should be consistent across subjects, (4) then pro-
vides a better representation for those subjects having a too
conservative MDL estimate of the number of components.

3.2.2. Agreement between Reference Model Based ROIs and
SVC Induced ROIs. To assess S&C method clustering per-
formance we adopt the external criteria approach [46, 47],
meaning that the performance is calculated with respect
to some external reference clustering scheme. Specifically,
we compare for each subject across tasks the grouping of
voxels obtained by the spatiofunctional SVC method to the
grouping of voxels in reference ROIs resulting from standard
t-test on activation analysis. The Fowlkes-Mallows index as
performance quality index was used for comparison. Let
𝐶

𝑙

𝑚
= {𝐶
1
, . . . , 𝐶

𝑚
} be the clustering partition of l voxels inm

clusters, obtained after running the SVC clustering algorithm
on the data set X of the l voxels in the predefined ROIs
and showing significant connectivity. We then define 𝑃𝑙

𝑠
=
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Table 5: Pairs of voxels are classified into 4 classes depending on the
relative grouping of constituting voxels in the reference partition and
clustering scheme induced by the algorithm.

Partition of {(V
𝑖
, V
𝑗
)} Same cluster in 𝑃 Different clusters in 𝑃

Same cluster in 𝐶 𝑎 𝑐

Different clusters in 𝐶 𝑏 𝑑
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Figure 4: FM index relative to the compatibility test between
the activation ROIs partition and the partition induced by the
spatiofunctional SVC. Voxels used in the computation are those
ROIs voxels resulting in significant connectivity as assessed by the
multiscale correlation analysis (MSCA).

{𝑃
1
, . . . , 𝑃

𝑠
}, the reference partition of these l voxels into S

predefined ROIs. We assigned a label to each pair of voxels
(V
𝑖
, V
𝑗
)
𝑖,𝑗={1,...,𝑙}

, derived from the data set X, according to the
labelling criteria presented in Table 5.

The Fowlkes-Mallows index (FM) is defined as FM =

√((𝑎(𝑎 + 𝑏))(𝑎(𝑎 + 𝑐))) which can be interpreted as the geo-
metricmean of (𝑎(𝑎+𝑏)) that is the probability that two points
belong to a same cluster in C if they belong to a same cluster
in P and (𝑎(𝑎 + 𝑐)), the probability that two points belong
to a same cluster in P if they belong to a same cluster in C.
This index ranges between 0 and 1, where 1 stands for perfect
agreement between the clustering induced partition and the
reference partition of the considered set of voxels. In Figure 4
the FM performance curves are reported for each motion
discrimination task. To help interpretation of the measure of
agreement between reference ROIs and correspondent SVC
induced clusters, we also report the FM index value for a
random labeling simulation. In particular, themean FMvalue
(0.13) was calculated over 104 random labeling simulations of
200 voxels inC classes, whereCwas randomly chosen in each
iteration from the set 𝐶 = {1, . . . , 6𝑆}. S indicates the true
number of clusters in the reference partition. ROIs segmented
through the retinotopic analysis were not considered in the
performance assessment.

3.2.3. Connectivity Networks of ROIs Found by S&C and Com-
parison to ICA. Figure 5 illustrates in three sample subjects a
visual comparison between clusters induced by S&C method
with maximal intersection with the predefined ROIs to the
predefined ROIs that show significant connectivity in each of
the motion tasks.

Figure 6(a) shows for a sample subject the application of
network visualization procedure of Section 2.3. In particular,
we extracted the maximal clique network involving area MT
in a sample subject for the MTLOC fMRI task. Since the
MTLOC stimulus is designed to elicit activation in area MT
[40] themaximal clique including areaMT in Figure 6(a) can
be interpreted as a network of coactivated ROIs responding
to this stimulus. This allows us to compare the performance
of our method at extracting networks of ROIs responding
to the stimulus to that of other methods based on data
decomposition, such as IndependentComponentAnalysis [7,
8].TheGIFT toolbox (http://icatb.sourceforge.net/) was used
to performan ICAanalysis on subjectAB in theMTLOC task.
The following parameters for decomposition were adopted:
(i) number of components in the model was estimated as
27, exploiting the MDL principle (Section 2.2.2); (ii) The
Informax algorithm [48] was used for decomposition. The
independent components were then ranked according to the
temporal correlation of their associated temporal profile with
the stimulus HRF time profile. The first two components in
this rank had Pearson Correlation coefficient with stimulus
time profile of 𝑅 = .42 and 𝑅 = .31, respectively. These
two components were z-transformed, thresholded at 𝑧 ≥ 2

[7], and reported in (Figure 6(b)) in blue and red color,
respectively.

4. Discussion

Section 3 showed S&C method ability in extracting directly
from data: (i) a set of functionally homogeneous and spatially
compact ROIs and (ii) visualizing the functional connectivity
networks in which they are involved. These ROIs can be
interpreted as connectivity ROIs [49].

The multiscale correlation analysis step (Section 2.1)
reduces both the dimensionality of the problem and the
incidence of local noise variance on the extraction of connec-
tivity patterns as shown in Table 2. Moreover, dimensionality
reduction only occurs at the expense of the noise components
as shown in Table 3, where stimulus related components
are more efficiently extracted from the reduced set of voxels
than from the initial set of all cortical voxels. The MSCA
makes a whole brain analysis feasible while avoiding bias
possibly introduced by the definition of a seed ROIs [11, 13].
Moreover the approach makes no assumptions either for
anatomically based downsampling [14, 15] or to preselect
voxels for clustering analysis [50, 51] or about expected
stimulus induced response. Moreover, the multiscale correla-
tion procedure provides a simple and robust framework for
statistical significance assessment. However, one limitation
of exploiting correlation analysis as a measure for functional
connectivity is the need to correct for datasets global noise
derived from physiological noise and motion correction
preprocessing steps.

Support Vector Machines have been proven to be effec-
tive in fMRI data analysis applications, for mental states
classification [52, 53] or brain activity detection [54]. In
the proposed S&C method we adopt a clustering purpose
variant of Support Vector Machine theory, the Support
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Predefined ROIs voxels showing connectivity are presented for three sample subjects in taskMDT,MDTPM, andMDT, respectively
(a, c, and e). Clusters induced by the spatiofunctional SVC clustering with maximal intersection with predefined ROIs are presented for three
sample subjects MDT, MDTPM, and MDT, respectively (b, d, and f). Arbitrary colors are used to distinguish identified ROIs.

Vector Clustering (SVC) algorithm, and exploit it to group
preselected voxels into spatially compact and functionally
homogeneous ROIs. Therefore, the strategy is different from
that of methods [55] exploiting SVM to separate active voxels
from nonactive ones. Moreover, we do not need a complex
feature selection strategy for SVM [56] since selection of the
subset of voxels of interests is accomplished by the multiscale
correlation analysis, and the Minimal Description Length
(MDL) principal component selection step is just needed
to ensure minimal but congruent representation of patterns
in the data, not to eliminate spurious signals. Moreover,
we include the spatiofunctional information used in the
clustering decision, directly in the proposed spatiofunctional
kernel. The SVC clustering algorithm is able to select spa-
tially compact and functionally homogeneous ROIs without
requiring a priori assumptions on ROIs number, shape, and

size as in other clustering methods. The global optimization
problem solved in the SVC computation also avoids the prob-
lem of local minima solutions. According to the rank based
on a weighted Jaccard coefficient (Table 1), the proposed
spatiofunctional SVC clustering method performed better
than other clustering methods on a public hybrid dataset
(Section 3.1). With respect to other approaches [57, 58] the
SVC clustering strategy greatly simplifies the exploitation of
local spatial connectivity and activity/background contrast
in the cluster segmentation process. In fact, SVC algorithm
focuses on the detection of cluster border discontinuities
and the implicit use of spatial and functional information
provided by the kernel. Furthermore, the nonlinear mixing
of all information conveyed by spatiofunctional features
operated by the kernel allows the SVC to deal with inefficient
PC decomposition, provided that the information of interest
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Figure 6: Comparison of ROIs clusters found by S&Cmethod (a) and ICAmethod (b) for one sample subject in taskMTLOC. (a) To generate
the presented connectivity network map from our method’s output we postprocessed the set of clusters in output by the SVC performing a
pairwise correlation analysis on their associatedmean time series.Thenwe extracted from the correlationmatrix the largest set of all mutually
significantly correlated ROIs including area MT in the considered subject. The resulting set of mutually connected ROIs was then visualized
on the subject structural volume. To help visualization and comparison with ICA maps, all ROIs in the network are reported in same colour.
(b) The first two stimulus related independent components, with Pearson Correlation coefficient with HRF of 𝑅 = .42 and 𝑅 = .31, are
reported in blue and red colour, respectively. The independent components were z-transformed and a threshold of 𝑧 ≥ 2 was applied.

is still available in the exploited functional components. This
tolerance of redundancy in SVC makes this algorithm less
sensitive to misspecification of the number of components,
which in the ICA method, for example, can cause the
split of stimulus related variance over several components
(Figure 6(b)). On the other hand, if insufficient information is
conveyed by the principal components selected as clustering
functional features, no cluster segmentation occurs, and the
SVC produces no activation/background segmentation at all.
This behaviour is also observed when no discontinuity in
activation profile is registered at the spatial scale specified by
the spatial kernel 𝛾

𝑆
parameter, as it was shown in Figure 5(b)

for reference visual areas in the occipital cortex which are
grouped in a single cluster.

When applied to the fMRI data from the three visual
motion tests, on the voxels selected by multiscale correlation
analysis, the spatiofunctional SVC grouped the subset of
voxels belonging to reference ROIs consistently, as quantified
by Fowlkes-Mallows clustering quality index (Figure 4) and
visually shown in Figure 5. Note that SVC reproduces refer-
ence ROIs in a completely data-driven way, that is, making
use of no a priori information about the expected response
temporal profile.

It should be noted that SVC computational cost is very
high (several hours per subject) and given the clustering
strategy based on edge segmentation, it can suffer from
poorly defined support domain (Section 2.2). For this reason
a coarse anatomical labeling procedure was implemented as
a preprocessing step for SVC clustering on motion battery
dataset. Notice that coarse anatomical labeling has no effect
on the select step (it comes after the multiscale correlation
analysis) and just provides SVC with more compact spatial
domains in which to operate the voxels spatiofunctional
grouping while not limiting its ability to extract ROIs. In fact,
as shown in Figure 4, SVC grouping of the voxels is far better

than a random grouping within the same anatomical area.
Nevertheless, it would be interesting in futurework to explore
the robustness of spatiotemporal Support Vector Clustering
step with respect to the coarseness of chosen anatomical
parcellation method (Section 2.3).

The output of S&Cmethod is a set of data-driven connec-
tivity ROIs, which are organized in networks not necessarily
mutually exclusive. The visualization procedure proposed in
Section 2.4 focuses on the search of the maximal set of
mutually correlated ROIs including a seed area, as shown in
Figure 6 considering MT are in the task MTLOC, explicitly
designed to elicit activation in this area. While this approach
has similarities to previous studies that extract network of
voxels significantly correlated with a specified seed ROI
[11, 13], there are important differences: (i) the correlation
analysis is defined on ROIs automatically extracted from
fMRI data with the S&C procedure; (ii) the seed ROI is
chosen a posteriori from the set produced by S&C method
and can be changed to visualize all networks extracted from
fMRI dataset with the data-driven procedure S&C.

The network obtained by our method (Figure 6) is in
good agreement with that obtained by an ICA analysis on
same subject when considering stimulus related components,
with the advantage of not requiring a component of interest
selection. Even though further work is needed to improve the
extraction and visualization of mutually exclusive networks
of ROIs from the methods output, the example provided in
Figure 6 suggests that the proposed method can be success-
fully used for the detection of networks of coactivated ROIs,
automatically segmented exploiting information available in
the data.

Finally, the proposed use of kernel methods and Support
Vector Clustering makes the clustering step very flexible
and useful in the exploration of additional features [59] for
voxels properties characterization, which may improve the
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sensitivity of the method. In future work we will address the
problem of characterizing and validating across subjects [60]
the ROIs networks identified in the analysis, with the interest-
ing perspective of relaxing [16] ROIs spatial superposability
assumptions across subjects.

5. Conclusion

In this paper we proposed a novel data-driven method, the
S&C method, which extracts, without relying on any a priori
knowledge, a set of ROIs mutually involved in connectivity
patterns present in fMRI data. The S&C method efficacy was
validated on a real fMRI dataset of subjects performing visual
tasks. A set of reference ROIs has been defined exploiting
commonly used model based activation analysis. The results
proved that the multiscale correlation analysis procedure,
the selection step of S&C method, is effective at reducing
the dimensionality of the problem and extracts a subset of
cortical voxels without signal loss. The spatiofunctional SVC
algorithm, the clustering step of S&C method, has been
validated on a public hybrid dataset (from [28]) on which the
SVC algorithm demonstrates better performance compared
to other commonly used clustering algorithm which was
reported.

When applied to the real fMRI dataset the spatiofunc-
tional SVC could reproduce consistently the grouping of
voxels belonging to the reference ROIs, without relying
on a priori information. The S&C method performance
on extracting networks (computing connectivity) involving
arbitrarily chosen ROI on real fMRI dataset was compared
to ICA method. We obtained good agreement between the
twomethods, but the S&Cmethod required less assumptions
and resulted on better definition of the ROIs. The Select
and Cluster method proposed is a promising, robust tool for
localizing spatially compact and functionally homogeneous
ROIs involved in significant functional connectivity and
visualizing the networks of connectivity towhich they belong.

Appendix

A. Additional Details on the MSCA Procedure

In this appendix we first provide detailed, step by step,
information for the significance assessment of the multiscale
correlation algorithm (MSCA); second, we illustrate the spa-
tial downsampling algorithm for the multiscale correlation
analysis (MSCA) and third, we discuss several scenarios for
downsampling validation.

A.1. Significance Assessment for Multiscale Correlation Algo-
rithm (MSCA). To assess significance at both scales, correla-
tion coefficients 𝑟

𝑖,𝑗
between each two voxels 𝑖, 𝑗 = 1, . . . , 𝑁V𝑜𝑥

were t-transformed through 𝑡
𝑖,𝑗

= 𝑟
𝑖,𝑗
√V/√1 − 𝑟𝑖,𝑗2, where

] is the number of degrees of freedom. The presence of
autocorrelation in fMRI time series [61, 62] will generally
result into t-transformed cross-correlation distributions (of
each voxel to the rest of the cortex at both scales considered)
with nonzero mean and unit variance (Figure 7).

To correct for this effect, we applied the empirical
methodology exploited in [11, 13]. Assuming that the t-
distribution consists of a Gaussian distributed component
from bulk system and physiologic correlations plus a tail
from higher order correlations, a three-parameter least-
square fit of the t-distribution from each voxel is made
to a Gaussian function. The free parameters are the mean,
standard deviation, and area. The fit is restricted to the full-
width at half-maximum (FWHM) of the t-distribution of
all connections projecting from each voxel V

𝑖0
to all other

voxels (we then have𝑁V𝑜𝑥 of such distributions), 𝑡𝑖0𝑗, and it is
required to have a 𝜒2 probability greater than 0.05. Once the
𝜇
𝑖0𝑗

and 𝜎
𝑖0𝑗

are estimated for each seed voxel the distribution
is corrected according to

𝑡corr
𝑖0𝑗
=

𝑡
𝑖0𝑗
− 𝜇
𝑖0𝑗

𝜎
𝑖0𝑗

. (A.1)

After applying the correction, the resulting distribution is
approximately standard normal (Figures 7(b) and 7(d)). At
fine scale, the correction is calculated just for voxels surviving
the mask, but to build the distribution correlations of the
given seed voxel to all initial voxels in the cortex are
considered.

Since spatial smoothing performed in the preprocessing
alters local cross-correlation structure, correlations between
neighbor voxels at acquisition scale are not considered. At
coarse scale we correct the effect of spatial smoothing by
requiring the distribution of correlations between neighbor
coarse voxels after smoothing to match mean and variance
of the correspondent distribution derived from same scans
before spatial smoothing preprocessing step.

The significance level is controlled at 𝛼 = 0.025 for coarse
scale correlation analysis, accounting for the fact that two
iterations are performed while it is controlled at 𝛼 = 0.05 for
acquisition scale correlation analysis. To address the problem
of multiple comparisons we used the False Discovery Rate
(FDR) approach described in [63].

In particular given n hypotheses to test and set the signif-
icance level to 𝛼, the following procedure was implemented:

(1) All n tests were ordered by increasing 𝑃 values 𝑃
1
<

𝑃
2
< ⋅ ⋅ ⋅ < 𝑃

𝑛
.

(2) The number of null hypotheses to be rejected was
given by

𝑁significant = max{𝑖 : 𝑃
𝑖
≤

𝑖

𝑛

𝛼

∑ (1/𝑗)

} , (A.2)

where n was equal to𝑁
𝑐
𝑠
2
−𝑁
𝑐𝑠
and𝑁

𝐹
𝑠
2
−𝑁
𝐹𝑠
for coarse and

fine scale, respectively.

A.2. Spatial Downsampling Algorithm for the Multiscale Cor-
relation Analysis (MSCA). The fMRI voxels acquisition grid
provides a coordinate system in the cerebral cortex. To obtain
coarser scale fMRI signal we consider a coarser scale grid
where nodes centers are placed in the three dimensions as
shown in the formals below:
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Figure 7: t-transformed correlation coefficient distributions at coarse and fine scale for a sample seed voxel in a sample subject before and
after applying the correction. Coarse level t-transformed cross-correlation distribution (a) before applying normality correction and (b) after
applying it. Fine scale t-transformed cross-correlation coefficient distribution (c) before applying normality correction and (d) after applying
it.

𝑉
𝑐𝑠
(𝑖, 𝑗, 𝑘) = (𝐶

𝑠
⋅ 𝑖 − int

−∞
(

𝑁
𝑥

𝐶
𝑠

) + Shift, 𝐶
𝑠
⋅ 𝑗 − int

−∞
(

𝑁
𝑦

𝐶
𝑠

) + Shift, 𝐶
𝑠
⋅ 𝑘 − int

−∞
(

𝑁
𝑧

𝐶
𝑠

) + Shift) ,

𝑖 = 1, . . . , int
−∞

(

𝑁
𝑥

𝐶
𝑠

) ; 𝑗 = 1, . . . , int
−∞

(

𝑁
𝑦

𝐶
𝑠

) ; 𝑘 = 1, . . . , int
−∞

(

𝑁
𝑧

𝐶
𝑠

) , 𝐶
𝑠
= int
−∞

(

FWHM
size (Voxel)

) + 1, Shift = 0, 1,

(A.3)

where 𝐶
𝑠
is the parameter controlling the coarseness level

of the downsampling procedure while the operator int
−∞
(⋅)

rounds its operand to the first integer towards minus infin-
ity. The scale parameter has been chosen equal to 𝐶

𝑠
=

int
−∞
(FWHM/size(Voxel)) + 1, where FWHM is the Full

Width at Half Maximum in mm of the Gaussian kernel used
for the spatial smoothing preprocessing of each functional
image. This choice for 𝐶

𝑠
allows us to obtain coarse voxels

of the order of the FWHM of the spatial smoothing kernel.
After placing the coarse grid nodes at points resulting from
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Figure 8: In the figure in Talairach X, Y, and Z coordinates, the spatial gradient of the number of pairwise connections to all other cortical
voxels is reported, projected by voxels within a cubic volume centered in area MT right hemisphere for a sample subject in task MTLOC.The
number of connections formed increases as reaching the center of MT area.

applying (A.3) on the data acquisition grid, in each functional
scan, we take the average over the spatial volumes (referred to
as coarse voxels) centered at nodes defined above and of size
equal to 𝐶

𝑠
. Note that only cortical voxels contribute to the

average signal associated with each coarse voxel.
As an example, considering an acquisition voxel size of

3 ∗ 3 ∗ 6mm3 and functional volumes composed of 22 slices
of 64 by 64 pixels each, each volume would consist of (𝑁

𝑥
∗

𝑁
𝑦
∗𝑁
𝑧
) = (64 ∗ 64 ∗ 22) = 90112 voxels. Then considering

a spatial smoothing filter of FWHM of 6 ∗ 6 ∗ 12mm, that

is, 2 times the acquisition voxel size, we get 𝐶
𝑠
= 3 and a

coarse voxel size of 3 times the acquisition voxel size in each
dimension.

Figure 8 illustrates the rationale for a coarse scale cor-
relation analysis to work as a preliminary dimensionality
reduction step. The S&C method assumption is that for an
ROI the connectivity signal is present over several spatially
contiguous voxels and it increases when approaching the
geometrical center of that ROI. Figure 8 shows the spatial
gradient of the number of significant correlations per voxel
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Figure 9: Percentage of voxels recovered after applying the coarse
grid shift procedure to the total number of voxels in the ROI. Data
from all subjects in all tasks were used to build the histogram. For
some ROIs almost all voxels (98%) are recovered after the shift.

within a cubic volume centered on area MT for a sample
subject.

We note that redundancy is necessary for the blind sam-
pling procedure to work. As seen in Figure 9, in the reference
ROI a large number of voxels discarded by the BLIND-
DOWNSAMPLING in the first iteration are recovered and
selected for the following step of clustering analysis just after
the coarse grid shift procedure.

A.3. Downsampling Validation Scenarios. MODELBASED-
DOWNSAMPLINGmethod exploits functional information-
driven downsampling: a mean time series is derived for each
subject specific ROI by averaging signals across all voxels
belonging to that ROI. Subsequently a cross-correlation
analysis was conducted among the time series of all ROIs.
All ROIs involved in any significant correlation at this coarse
level are used to build a binary mask, so that all voxels
belonging to the significantly (significance level controlled at
𝛼 = 0.05) connected ROIs enter a second correlation analysis
on the voxels time series. The correction shown in (A.1) in
this appendix was implemented by estimating parameters on
the cross-correlation distribution of each ROI mean signal to
the rest of cortical voxels.

BLIND-DOWNSAMPLING a coarse scale correlation
analysis is performed on all cortical voxels as described in
Section 2.1 in the paper. A mask is applied to retain only
correlations among the coarse scale voxels intersecting the
predefined ROIs. After the correction in (A.1), significance
of correlations is assessed as explained in Section 1 of this
appendix, by using the False Discovery Rate at a level
𝛼 = 0.025 (accounting for the shift) and corrected for
multiple comparisons with a number of tests = n coarse roi2-
ncoarseroi. The ncoarseroi n coarse roi is the number of
coarse scale voxels with nonnull intersection with reference
ROIs. A binary mask is then derived from the union of
all coarse voxels involved in any significant correlation and

a second correlation analysis is performed on all voxels
surviving the mask.

NO-DOWNSAMPLING is described as follows: To have
a reference on the signal loss occurring when performing a
multiscale correlation analysis with the methods above, we
also performed a correlation analysis directly on the whole
set of voxels in the reference ROIs keeping all significant
correlations (significance level controlled at 𝛼 = 0.05) and
call this reference framework NO-DOWNSAMPLING.

B. Additional Details on the SVC Algorithm
and Implemented Kernel

In this appendix we provide additional computational details
on the Support Vector Clustering algorithmwe introduced in
Section 2.2.1 of the paper and describe more extensively the
computation of the spatiofunctional kernel.

The SVC algorithm clustering strategy consists of two
steps: (a) estimation of the domain support of the sample
vectors [34] to find the minimal enclosing hypersphere;
(b) segmentation in disconnected regions by means of the
boundaries of the domains [33].

(a) Support Vector Domain Description. Assume a samples set
{�⃗�
𝑖
} ⊑ 𝑋 composed of N points with 𝑋 ⊑ R𝑑 representing

the input space and 𝜙 a nonlinear mapping function from
𝑋 → R𝑑 with associated kernel function K [64], such that
𝐾(�⃗�
𝑖
, �⃗�
𝑗
) = 𝜙(�⃗�

𝑖
) ⋅ 𝜙(�⃗�

𝑗
). The sample set domain support in

the mapped space can be described by the minimal enclosing
hypersphere which can be found by solving the following
optimization problem:

min 𝑅

2
+ 𝐶

𝑁

∑

𝑗=1

𝜀
𝑗

subject to 





𝜙 (�⃗�
𝑗
) − �⃗�







2

≤ 𝑅

2
+ 𝜀
𝑗

𝜀
𝑗
≥ 0;

∀𝑗 ∈ {1, . . . , 𝑁}

(B.1)

with ‖ ⋅ ‖ indicating Euclidean norm, �⃗� the center of the hyper
sphere, andR its radius, and 𝜀

𝑗
≥ 0 are slack variables allowing

for soft boundaries; C is a constant controlling the weight of
outliers in the optimization problem.

The optimization problem in formula (B.1) has the follow-
ing associated Lagrangian:

𝐿 = 𝑅

2
−

𝑁

∑

𝑗=1

(𝑅

2
+ 𝜀
𝑗
−





𝜙 (�⃗�) − �⃗�






2

) 𝛽
𝑗
−

𝑁

∑

𝑗=1

𝜀
𝑗
𝜇
𝑗

+ 𝐶

𝑁

∑

𝑗=1

𝜀
𝑗
,

(B.2)

where 𝛽
𝑗
≥ 0 and 𝜇

𝑗
≥ 0 are Lagrange multipliers associated

with the constraints of the problem. The function L must
be minimized with respect to the variables R, �⃗�, and 𝜀

𝑗
and

maximized with respect to Lagrange multipliers 𝛽
𝑗
and 𝜇

𝑗
.



16 Computational Intelligence and Neuroscience

The Karush-Kuhn-Tucker (KKT) [31] allows for the problem
to be written in the Wolfe dual formulation of the problem

𝑊 =

𝑁

∑

𝑗=1

𝛽
𝑗
𝜙 (�⃗�
𝑗
)

2

−

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛽
𝑖
𝛽
𝑗
𝜙 (�⃗�
𝑖
) ⋅ 𝜙 (�⃗�

𝑗
) (B.3)

which must be maximized with respect to 𝛽
𝑗
subject to 0 ≤

𝛽
𝑗
≤ 𝐶, ∑𝑁

𝑗=1
𝛽
𝑗
= 1, for all 𝑗 ∈ {1, . . . , 𝑁}. Data points with

associated 𝛽
𝑖
, 0 < 𝛽

𝑖
< 𝐶, lie on the hypersphere surface

and are called Free Support Vector (FSV), while data points
whose 𝛽

𝑖
= 𝐶 lie outside the hypersphere surface and are

referred to as Bounded Support Vector (BSV). Points BSV and
FSV, generally called support vector, convey all information
needed to define the radius R and the center �⃗� of the hyper
sphere.

Exploiting the kernel function 𝐾(�⃗�
𝑖
, �⃗�
𝑗
) = 𝜙(�⃗�

𝑖
) ⋅ 𝜙(�⃗�

𝑗
)

expressing dot product in the mapped space, (B.3) can be
rewritten as

𝑊 =

𝑁

∑

𝑗=1

𝛽
𝑗
𝐾(�⃗�
𝑗
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𝑁

∑
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𝑖
𝛽
𝑗
𝐾(�⃗�
𝑖
, �⃗�
𝑗
) . (B.4)

For each input point �⃗�, we can now reexpress its distance from
the center of the hyper sphere �⃗�:

𝑅

2
(�⃗�) =
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2

= 𝐾 (�⃗�, �⃗�) − 2

𝑁

∑

𝑗=1

𝛽
𝑗
𝐾(�⃗�
𝑗
, �⃗�)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛽
𝑖
𝛽
𝑗
𝐾(�⃗�
𝑖
, �⃗�
𝑗
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(B.5)

The hypersphere radius is given by 𝑅 = {𝑅(�⃗�
𝑖
) |

�⃗�
𝑖
is Free Support Vector}. The boundaries of the regions

enclosing points in input space are defined by the set {�⃗� |

𝑅(�⃗�) = 𝑅} which can be interpreted as the set of points
defining cluster boundaries.

For kernels 𝐾(�⃗�, �⃗�) depending just on �⃗� − �⃗�, 𝐾(�⃗�, �⃗�) is
constant. For those kernel types the optimization problems
reduce to

min
𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛽
𝑖
𝛽
𝑗
𝐾(�⃗�
𝑖
, �⃗�
𝑗
)

subject to 0 ≤ 𝛽
𝑗
≤ 𝐶

𝑁

∑

𝑗=1

𝛽
𝑗
= 1;

∀𝑗 ∈ {1, . . . , 𝑁} .

(B.6)

(b) Cluster Assignment. According to [36] to assign different
input vectors to different clusters a geometrical approach is
exploited based on the function𝑅(�⃗�) and the observation that
a generic path in input space connecting twopoints belonging

to two different clusters is not completely enclosed in the
minimal enclosing hypersphere in features space. So in such
a path some points, �⃗�

𝑖
, must exist such that 𝑅(�⃗�

𝑖
) > 𝑅.

In this way, the following adjacency matrix A between all
couples of input point �⃗�

𝑖
and �⃗�

𝑗
is defined:

𝐴
𝑖𝑗

=

{

{

{

1 ⇐⇒ 𝑅(�⃗�) ≤ 𝑅 ∀�⃗� ∈ {path (�⃗�
𝑖
→ �⃗�
𝑗
)}

0 otherwise.

(B.7)

Clusters are then defined as the connected components of the
graph induced by matrix A. The above geometrical property
is verified sampling 20 points on the straight path connecting
each couple of points.

Computation of the Spatiofunctional Kernel. The spatial fea-
tures used in the computation were the 3 spatial coordinates
associated with each voxel after the normalization step to
the MNI template in SPM. Also Talairach coordinates were
associated with these voxels for identification of reference
ROIs based on literature.

The resulting spatial kernel is then defined as
𝑘spatial(V𝑖, V𝑗) = 𝑒

−∑
𝑘=1,...,3
𝛾
𝑆

𝑘
(V𝑖(𝑥𝑘)−V𝑗(𝑥𝑘))

2

, where V
𝑖
, V
𝑗
are two

given voxels between which we want to calculate the kernel
matrix entry, 𝑥

𝑘=1,2,3
≡ (𝑥
1
, 𝑥
2
, 𝑥
3
) = (𝑥, 𝑦, 𝑧)MNI are the

voxels’ coordinates in MNI space, and 𝛾𝑆1,2,3 > 0 are spatial
parameters controlling the clustering algorithm explained in
further detail in the following section.

We now describe the functional attributes 𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛

that characterize each voxel functionally. The use of all time
points’ values for each voxel would lead to a high number
of functional attributes (∼100) with the risk of making
each point a cluster in the high-dimensional mapped space.
Therefore, we need to extract a low-dimensional functional
representation which allows us to cluster voxels on the
base of main subspace of covariance found in the data. We
can obtain such a representation running a Singular Value
Decomposition [36] of the time series of all voxels in output
of the Multiscale Correlation Analysis. This way voxels will
be clustered on the base of large scale connectivity pattern
captured by main principal components. It should be noted
that (i) main functional subspaces of covariance are extracted
directly from data and not imposed a priori; (ii) the use
of a kernel approach, which allows for nonlinear mapping
of the PC weights, is supposed to grasp more complex
similarities/dissimilarities in voxels functional profile and
compensates for eventual inefficient PC decomposition by
exploiting all information spread across components.

Given the matrix 𝑌 = (

V1
1
⋅⋅⋅ V1
𝑚

.

.

. ∵

.

.

.

V𝑘
1
⋅⋅⋅ V𝑘
𝑚

) with 𝑘 = 110 time

points and m the number of cortical voxels in output of the
correlation analysis, we calculate the decomposition

𝑌 = ULW𝑇 =
𝑟

∑

𝑖=1

√𝑙
𝑖
𝑢
𝑖
𝑤

𝑇

𝑖
(B.8)
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and associate with each voxel v the spatial weights 𝑤V
𝑖
, with

i denoting the component ordinal number. It can be shown
that 𝑤

𝑖
∝ 𝑌

𝑇
𝑢
𝑘
[6] so that spatial weights equal temporal

scores up to a scaling factor.
To make each functional feature’s contribution compara-

ble across components we t-transformed the weights for each
component.

Finally, the following functional kernel was
defined for each couple of voxels 𝑘functional(V𝑖, V𝑗) =

𝑒

−∑
𝑝=1,...,𝑃
𝛾
𝐹

𝑝
(V𝑖(�̃�PC𝑝)−V𝑗(�̃�PC𝑝))

2

. Here again, V
𝑖
, V
𝑗
are two given

voxels between which we want to calculate the kernel
matrix entry, ]

𝑖
(�̃�PC𝑝) is the t-transformed weight for

the pth component of the voxel i, and 𝛾

𝐹

𝑝
are functional

parameters controlling the clustering algorithm introduced
in Section 2.2.2.
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